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AdS solutions to the 2D type 0A effective action
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I. INTRODUCTION

AdS backgrounds of string theory are often fruitful
arenas for studying holographic dualities and for con-
structing sigma models with R-R fluxes, among other
things. AdS backgrounds of type 0A string theory should
be no exception. In particular, the recent discovery of a
matrix quantum mechanics dual to two-dimensional
type 0A string theory [1,2] suggests a promising direction
for understanding AdS2=CFT1 [3]. Also, two-
dimensional AdS presents one of the simplest back-
grounds in which to study sigma models in R-R flux.

As a first step in these pursuits, we present here a two-
parameter family of AdS2 solutions to the two-
dimensional type 0A effective action. One of the parame-
ters is the tachyon expectation value T (equivalently, the
ratio of dualized R-R field strengths, q2�=q

2
�). The other

parameter is the string coupling e2	 (equivalently, the
magnitude of the field strength q2). In these solutions,
string loops can be suppressed by reducing the string
coupling, but the high curvature of the spaces makes
higher order �0 corrections important.

In Sec. II, we briefly review the 2D 0A string theory. In
Sec. III, we present our family of AdS2 solutions. In
Sec. IV, we discuss possible corrections to our solutions
from higher order terms in the effective action.

II. TWO-DIMENSIONAL TYPE 0A

The ten-dimensional type 0A string theory is given by
the same world sheet action as the type IIA string, but
with a Gliozzi-Scherk-Olive projection onto the closed
string sectors

�NS�;NS�� �NS�;NS�� �R�;R�� �R�;R��;

(2.1)

where � and � denote the eigenvalue of the world sheet
fermion number operator ��1�F. In ten dimensions, each
of these sectors contains a tower of states corresponding
to the possible transverse oscillations. In two dimensions,
however, there is no room for transverse oscillations, so
the situation is much simpler. We have the graviton g	

and dilaton 	 in the �NS�;NS�� sector, the tachyon T in
the �NS�;NS�� sector, and two gauge fields C���
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the R-R sectors that give rise to two field strengths, F���
	
 .

An allowed background for this theory is the two-

dimensional linear dilaton vacuum (g	
 � �	
 and 	 �����
2
�0

q

) with an exponential tachyon wall [T � 	e�2=�

0�1=2
]

and zero field strengths (F���
	
 � 0). The world sheet action

for this string theory is the action of N � 1 super-
Liouville theory plus the action for a free scalar
superfield.

The action for N � 1 super-Liouville theory can be
written in superfield formalism1 as

SSLT �
1

4�

Z
d2zd2��D	D	� 2i	eb	�; (2.2)

where 	 is the scalar superfield

	 �

�����
2

�0

s

� i� � i�  �i��F; (2.3)

and the covariant derivatives are given by

D � @� � �@z; D � @� � �@z: (2.4)

In the case b � 1, this yields a theory with central charge
ĉ � 9. When combined with the ĉ � 1 theory of a free
scalar superfield X with action

SX �
1

4�

Z
d2zd2��DXDX�; (2.5)

we get a critical superconformal field theory with central
charge ĉ � 10. This is the world sheet action for two-
dimensional type 0A in the linear dilaton vacuum.

The effective spacetime action was calculated in [4]
and was found to beZ

d2x
�������
�g

p
�
e�2	

2�2

�
8

�0
� R� 4�r	�2 � f1�T��rT�

2

� f2�T� � 
 
 


�
�
��0

2
f3�T��F����2

�
��0

2
f3��T��F����2 � 
 
 


�
: (2.6)

The first few terms in a Taylor expansion of the fi
1Unfortunately, it is standard in the literature to use 	 for
both the Liouville superfield and the background dilaton.
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functions are

f1�T� �
1

2
� 
 
 
 ; f2�T� �

1

�0
T2 � 
 
 
 ;

f3�T� � 1� 2T � 2T2 � 
 
 
 :
(2.7)

There is evidence that the exact expression for f3�T� is
e�2T [5,6], and we will use this form for f3 in our
calculations.

III. AdS2 SOLUTIONS

A. Equations of motion

To simplify the action (2.6), we will dualize the R-R
field strengths:

�
2��0

4
f3��T��F

����2�1����0f3��T�F
��� ^�F���

!�
1

4��0
f3��T�q2��1�q�F

���

!�
1

4��0
q2�f3��T��1:

In the second line, we have introduced an auxiliary field
q�. The equation of motion for q� is

q� � �2��0f3��T� � F
���; (3.1)

which, when substituted in, gives the original action. In
the third line, we have integrated out A��� which con-
strains q� to be a constant. Therefore, in the third line,
the fields A��� and q� are no longer functionally inte-
grated. The full action can now be written as

S �
Z
dxdt

�������
�g

p
�
e�2	

2�2

�
8

�0
� R� 4�r	�2 � f1�T��rT�2

� f2�T� � 
 
 


�
�

1

4��0
f3��T�q

2
�

�
1

4��0
f3�T�q2� � 
 
 


�
: (3.2)

Varying with respect to the metric g	
, dilaton 	, and
tachyon T gives the equations of motion

�!g�

1

2
g	


�
e�2	

2�2

�
8

�0
� 4r2	� 4�r	�2 � f1�T��rT�2 �

f2�T�
�
�

1

4��0
f3��T�q

2
� �

1

4��0
f3�T�q

2
�

�
�

e�2	

2�2
��2r	r
	� f1�T�r

	Tr
T� � 0;

(3.3)
�!	�

8

�0
� R� 4r2	� 4�r	�2 � f1�T��rT�

2 � f2�T� � 0;

(3.4)
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and

�!T�

e�2	

2�2

�
2f1�T�r

2T � f01�T��rT�
2 �

4f1�T��r		��r	T� � f02�T�
�
�

1

4��0
f03��T�q

2
� �

1

4��0
f03�T�q

2
� � 0; (3.5)

where primes denote differentiation with respect to T.
Setting 	 and T constant, we find

�!g�

e�2	

2�2

�
8

�0
� f2�T�

�
�

1

4��0
q2�f3��T� �

1

4��0
q2�f3�T� � 0; (3.6)

�!	�
8

�0
� R� f2�T� � 0; (3.7)

and

�!T�
e�2	

2�2
f02�T� �

1

4��0
q2�f

0
3��T� �

1

4��0
q2�f

0
3�T� � 0:

(3.8)

With the AdS2 metric

ds2 �
�4l2

sin2�u� � u��
du�du�; (3.9)

the Ricci scalar is

R � �2=l2: (3.10)
B. Solutions T � 0

The solution with q� � q� � q and T � 0 satisfies the
equations of motion with AdS radius given by

l2 � �0=4 (3.11)

and dilaton given by

e�2	 �
�2

8�
q2: (3.12)

This solution is related to the near-horizon geometry
found in [7]. A notable feature of this solution is that
the curvature radius is fixed at a value of order the string
length. This implies that higher order �0 terms in the
effective action will be important. This will be addressed
in Sec. IV. Also, note that we are free to tune the string
coupling to zero by ramping up the strength of the R-R
flux.
-2



;

AdS SOLUTIONS TO THE 2D TYPE 0A EFFECTIVE ACTION PHYSICAL REVIEW D 70 106001
In this case, the ‘‘tachyon’’ is massive for all values of
q. This can be seen as follows. The !T equation of
motion, to first order in T, gives us�

r2 �r2	� �r	�2 �
2

�0
�

4�2

��0
e2	q2

�
�e�	T� � 0:

(3.13)

The !	 equation of motion, to zero order in T, tells us
that

r2	� �r	�2 �
2

�0
� �

R
4
; (3.14)

and, when substituted into the linearized !T equation,
gives us�

r2 �
R
4
�

4�2

��0
e2	q2

�
�e�	T� � 0: (3.15)

Finally, substituting our background expressions for 	
and R, we get 	

r2 �
30

�0



�e�	T� � 0; (3.16)

so that the tachyon mass is m2
T � 30

�0 � 15
2l2 . The authors of

[4] noted that, in ten dimensions, R-R flux could stabilize
the tachyon potential. In our two-dimensional case, we
see that the R-R flux makes the otherwise-massless
tachyon massive.

Solutions to the wave equation in AdS2 are most readily
attained in Poincaré coordinates, in which

ds2 � l2
�dt2 � dy2

y2
: (3.17)

In these coordinates, the wave equation takes the form	
@2

@y2
�
@2

@t2
�
l2m2

T

y2



T�t; y� � 0: (3.18)

Using separation of variables, we can write the general
time-dependent, positive-frequency solution as
e�i!t(�y�. The normalizable solution is readily obtained
in terms of a Bessel function as

Tw�t; y� � e�i!t
���
y
2

r
Jh��1=2�!y�; (3.19)

where h� � 1
2 �

1
2

����������������������
1� 4l2m2

T

q
. The static solutions are

obtained by noting that the wave equation

y2
@2

@y2
T � l2m2

TT (3.20)

implies that T � yn, where n�n� 1� � l2m2
T . Therefore,

the general static solution is

T � ayh� � byh� : (3.21)

Note that, although these static solutions are non-
106001
normalizable, they may make an appearance as approxi-
mate solutions in regions of spacetime that are AdS-like.

Solutions to the wave equation in global coordinates
are a little more difficult to come by, but they have been
worked out in [8]. In the global coordinates

ds2 � l2
�d.2 � d/2

cos2/
; (3.22)

the normalized positive-frequency solutions are

Tn�.;/����h�2h�1

������������������������
n!

���n�2h�

s
e�i�n�h�.�cos/�hChn�sin/�

(3.23)

where n � 0; 1; 2; . . . , Chn is the Gegenbauer polynomial,
and h is once again related to m2

T by h�h� 1� � l2m2
T .

Note that, unlike in Poincaré coordinates, the spectrum
in global coordinates is discrete.

C. Solutions with T � 0

The solution given in the previous section can be de-
formed by moving the constant value of T away from
zero. The solution is given by

l2 �
�0=4

1� �0

8 f2�T�
; (3.24)

e�2	 �
�2
16� �q

2
�f3��T� � q2�f3�T��

1� �0

8 f2�T�
; (3.25)

and

q2�
q2�

�
f3��T�
f3�T�

8=�0 � f2�T� � f02�T�=2
8=�0 � f2�T� � f02�T�=2

: (3.26)

Again, it is clear that, for all solutions in this family, we
can send the string coupling to zero while holding fixed
both the tachyon expectation value T and the AdS radius l.
This is accomplished by sending q2� and q2� to infinity
while holding the ratio q2�=q2� fixed.

It is not evident from these equations whether or not
there exists an AdS2 solution with one of the q’s, say q�,
set to zero. Setting q� � 0 would require a T of order 1,
but to understand such large values of T would require a
more complete knowledge of f2. Specifically, q� � 0
would require that

8

�0
� f2�T� �

1

2
f02�T� � 0; (3.27)

and it is not known whether this equation has solutions.
IV. DISCUSSION

It should be noted that the AdS spaces presented here
are solutions to the first few terms in the effective action.
Since the AdS radius is of order the string length, we
-3



DAVID MATTOON THOMPSON PHYSICAL REVIEW D 70 106001
expect higher order terms in �0 to change some of the
quantitative features of the solutions, such as the exact
value of the AdS radius or the true mass of the tachyon.
However, as we shall discuss here, the qualitative features
of the AdS solutions are rather generic and are not ex-
pected to be changed by the higher order �0 terms.

We can ask what other terms might make contributions
to the equations of motion, and, therefore, might change
features of the AdS solution. For simplicity, let us con-
centrate on the T � 0 solution found in Sec. III C. Since
we seek an AdS solution in which R, T, and 	 are
constant and F� is nondynamical, the most general
term of interest in the dualized action is
�0n�1e�2m�2�	TpRnq2m� . The dilaton dependence is fixed
by the number of R-R field strengths in the monomial
[9,10]. Since we are considering the T � 0 solutions in
this discussion, terms with p > 1 will not contribute to
any of the field equations. The p � 1 terms will contrib-
ute to the !T variation, but the proposed symmetry [1] of
the theory under T ! �T and q� $ q� guarantees that
the contribution to the equation of motion will be propor-
tional to �q2m� � q2m� �. Setting q2� � q2� � q2 as before,
this term disappears from the field equations.

Having dispensed with terms involving T, we are left
to focus on terms of the form �0n�1e�2m�2�	Rnq2m. Under
variation of the metric, the higher order terms in the
action X

n;m

cn;m
Z �������

�g
p

e�2m�2�	�0n�1Rnq2m

modify the !g field equation to

e�2	

2�2

8

�0
�

q2

2��0
�
X
n;m

cn;m�1�n�e
�2m�2�	�0n�1Rnq2m�0:

We still seek a one-parameter family of solutions (with
T � 0) in which q2 is proportional to e�2	, and we will
denote the constant of proportionality as B:
106001
q2 � Be�2	:

The !g equation of motion may now be written as

8�
�2

�
B� 2�2

X
cn;m�n� 1���0R�nBm � 0:

Similarly, the !	 equation of motion becomes

8� �0R� 2�2
X
cn;m�m� 1���0R�nBm � 0:

So long as there are simultaneous solutions to these two
equations for some negative R and positive B, a one-
parameter family of AdS solutions exists in which the
string coupling may be tuned towards zero. This one-
parameter family of AdS solutions, with Ricci scalar R,
would be parametrized by q2 with e2	 � B=q2.

The evidence gathered here suggests that the qualita-
tive structure of the AdS solutions is rather generic and is
likely to be unaffected by terms higher order in �0. This
fact motivates a search for the corresponding world sheet
sigma model describing type 0A strings propagating in
these AdS2 spaces. Because of the existence of nonzero R-
R fluxes, the correct sigma model will most likely not be
found using the Neveu-Schwarz-Ramond formalism.
Fortunately, several other world sheet formalisms have
been developed that have allowed for quantization of the
string in R-R backgrounds. For example, the hybrid for-
malism has been used to study superstring quantization in
AdS3 � S3 [11], AdS2 � S2 backgrounds [12], and curved
2D backgrounds [7].
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